Controlled microwave-assisted growth of silica nanoparticles under acid catalysis.
نویسندگان
چکیده
In this work, we demonstrate the controlled synthesis of silica nanoparticles as small as 30 nm (±5 nm) and as large as 250 nm (±30 nm) in minutes using surfactant free, microwave-assisted synthetic techniques. Proper choice of solvent, silicic acid precursor, catalyst, and microwave irradiation time were the variables used to control nanoparticle size and, ultimately, overcome the previously reported shortcomings of using microwaves for silica nanoparticle synthesis. In these reactions acetone, a low-tan δ solvent, mediates the condensation reaction, while selective absorption of pulsed microwave radiation by the precursor promotes nanoparticle growth. Dynamic light scattering data, scanning electron micrographs, and transmission electron micrographs of the reaction products show that the size, shape, and granularity of the silica nanoparticles are highly dependent on reaction conditions. These microwave methods have utility for mass production of silica nanoparticles or other nanoparticles by flow-through microwave synthetic methods for industrial applications, as well as a facile method for encapsulating or embedding materials with silica for improved functionality and stability.
منابع مشابه
Reusable Silica supported Perchloric acid and potassium bisulphate as green catalysts for thiocyanation of aromatic compounds under solvent free conditions
Reusable silica supported perchloric acid and potassium bisulphate have been prepared and explored as green catalysts for thiocyanation of aromatic compounds under conventional and solvent free microwave assisted conditions. The microwave assisted protocol exhibited remarkable rate accelerations and offered selective thiocyanation of aromatic and hetero aromatic compounds in good yields. Reacti...
متن کاملMicrowave-assisted synthesis of SiO2 nanoparticles and its application on the flame retardancy of poly styrene and poly carbonate nanocomposites
Various morphologies of silica nanoparticles were synthesized by a microwave-assisted Pechini method. Silica nanostructures were synthesized via a fast reaction between tetra ethyl ortho silicate and ammonia at presence citric acid and other effective agents in Pechini procedure. Then for preparation of polymer-matrix nanocomposites, SiO2 nanoparticles were added to poly carbonate (PC) and poly...
متن کاملMicrowave-Assisted Solution Combustion Synthesis of WO3 Nanoparticles: Optical and Colorimetric Characteristics
Tungsten oxide (WO3) and tungsten oxide hydrate (WO3.H2O) nanoparticles were synthesized via microwave-assisted solution combustion in comparison with the acidic precipitation method. Oxalic acid was used as a surfactant and forming agent in the acidic precipitation method. In addition to oxalic acid, glycine and citric acid were also used as fuels in the microw...
متن کاملSynthesis of ZnO-nanoparticles by microwave assisted sol-gel method and its role in photocatalytic degradation of food dye Tartrazine (Acid Yellow 23)
ZnO- nanoparticles with an average particle size of 24 nm were successfully synthesized using the microwave assisted sol- gel technique. Structural and morphological properties of the nanoparticles were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy disperse spectrum (EDS) and Fourier transform infrared spectroscopy (FTIR). The band gap ene...
متن کاملSynthesis of ZnO-nanoparticles by microwave assisted sol-gel method and its role in photocatalytic degradation of food dye Tartrazine (Acid Yellow 23)
ZnO- nanoparticles with an average particle size of 24 nm were successfully synthesized using the microwave assisted sol- gel technique. Structural and morphological properties of the nanoparticles were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy disperse spectrum (EDS) and Fourier transform infrared spectroscopy (FTIR). The band gap ene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 4 12 شماره
صفحات -
تاریخ انتشار 2012